Numerical approach to the fractional Klein-Kramers equation.
نویسندگان
چکیده
Subdiffusion in the presence of an external force field can be described in phase space by the fractional Klein-Kramers equation. In this paper, we explore the stochastic structure of this equation. Using a subordination method, we define a random process whose probability density function is a solution of the fractional Klein-Kramers equation. The structure of the introduced process agrees with the two-stage scenario underlying the anomalous diffusion mechanism, in which trapping events are superimposed on the Langevin dynamics. We develop an efficient computer algorithm for visualization of fractional Klein-Kramers dynamics and present some simulation results based on Monte Carlo techniques.
منابع مشابه
Analytical solutions for the fractional Klein-Gordon equation
In this paper, we solve a inhomogeneous fractional Klein-Gordon equation by the method of separating variables. We apply the method for three boundary conditions, contain Dirichlet, Neumann, and Robin boundary conditions, and solve some examples to illustrate the effectiveness of the method.
متن کاملApplications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations
In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...
متن کاملB-SPLINE COLLOCATION APPROACH FOR SOLUTION OF KLEIN-GORDON EQUATION
We develope a numerical method based on B-spline collocation method to solve linear Klein-Gordon equation. The proposed scheme is unconditionally stable. The results of numerical experiments have been compared with the exact solution to show the efficiency of the method computationally. Easy and economical implementation is the strength of this approach.
متن کاملFractional transport equations for Lévy stable processes.
The influence functional method of Feynman and Vernon is used to obtain a quantum master equation for a system subjected to a Lévy stable random force. The corresponding classical transport equations for the Wigner function are then derived, both in the limits of weak and strong friction. These are fractional extensions of the Klein-Kramers and the Smoluchowski equations. It is shown that the f...
متن کاملExact Solution for Nonlinear Local Fractional Partial Differential Equations
In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 76 6 Pt 2 شماره
صفحات -
تاریخ انتشار 2007